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Abstract

A new ligthweight multichannel moderate bandwidth filter instrument designed to be
flown on balloons, is described. The instrument measures the radiation field within the
short UV (center wavelength at 312 nm) and long UV (center wavelength at 340 nm).
The angular and spectral characteristics of the instrument are discussed and the cali-5

bration procedure outlined. Measurements made during a stratospheric balloon flight at
twilight conditions from Gap-Tallard, France, are presented and compared with state-
of-the-art radiative transfer model simulations. The model simulations and the mea-
surements agree within ±10% (±20%) for solar zenith angles smaller than 93◦ (90◦)
for the 340 (312) nm channel. Based on the model simulations of the measured ra-10

diation, actinic flux spectra are reconstructed. These are used to calculate various
photodissociation rates.

1. Introduction

UV and visible radiation plays an important role for the photochemistry of the tropo-
sphere and the stratosphere. In spite of this in situ measurements of the UV radiation15

field in the troposphere and the stratosphere are relatively rare. Schiller et al. (1994)
reported actinic flux measurements in the troposphere and stratosphere from a bal-
loon platform. The instrument measured the actinic flux in a single wavelength interval,
thus providing no spectral information. Recently airborne measurements have been
made of the spectral actinic flux at selected altitudes using spectroradiometers, (see20

e.g. McElroy, 1995; McElroy et al., 1995; Shetter and Müller, 1999; Hofzumahaus et al.,
2001). Gao et al. (2001) derived the JNO2

in the lower stratosphere for low sun using in
situ chemical measurements. Finally Bösch et al. (2001) have reported comparisons
of measured proxy JNO2

with model simulations for large solar zenith angles in the
troposphere and stratosphere.25

Here measurements made by a new lightweight multichannel moderate bandwidth
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filter instrument, hereafter named NILU-CUBE, are reported. Measurements were
made as the NILU-CUBE was flown on a balloon to an altitude of about 30 km. The
measurements are compared with model simulations and subsequent data analysis
yields various photodissociation rates.

2. Instrumentation5

The NILU-CUBE is a twelve channel moderate bandwidth filter instrument. It consists
of six heads mounted on the faces of a cube, see Fig. 1. Each head measures the irra-
diance in two channels. The channels are centered at approximately 312 and 340 nm
and have a full width at half maximum (FWHM) of approximately 10 nm. In order to
keep the weight and power consumption low, the instrument is not temperature stabi-10

lized. However, the instrument is very well insulated and the temperature is recorded
for each of the six heads. Data are recorded every five seconds and stored in a seper-
ate logging unit.

During flight the NILU-CUBE is mounted such that one head faces upwards mea-
suring the downwelling radiation. The opposite head measures the upwelling radiation15

while the remaining four heads point towards the horizon. As the balloon ascends the
payload will rotate, hence the signal measured by the four heads pointed towards the
horizon will vary considerably.

To check the NILU-CUBE before and after flying a NILU-UV instrument was used.
The NILU-UV is a six channel moderate bandwidth filter instrument. It measures the20

total (direct plus diffuse) downward irradiance at approximately 305, 312, 320, 340,
and 380 nm with a FWHM of 10 nm. In addition it has a channel covering photosyn-
thetic active radiation (PAR) between 400–700 nm. The 312 and 340 nm channels are
identical on the NILU-UV and the NILU-CUBE except for the shape of the teflon diffu-
sors on the respective instruments. The NILU-UV is temperature stabilized. It reported25

data every second to a computer. In addition to being used to check the stability of the
NILU-CUBE before and after flying, the NILU-UV was used during the flight to moni-
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tor the radiation field at the surface. The clocks of the NILU-CUBE and the NILU-UV
where synchronized using Global Position System (GPS) receivers prior to the flight.

2.1. Angular response

The radiation quantity of interest for photochemical applications is the actinic flux F
(Madronich, 1987)5

F (λ) =
∫
φ

∫
θ
I(λ, θ,φ) sinθdθdφ. (1)

Here I is the radiance in direction θ and φ at wavelength λ. The actinic flux represents
the total number of photons incident at a point. Ideally an instrument for measurement
of the actinic flux should have a relative angular response with unit response for all
incoming directions, black line Fig. 2. Each head of the NILU-CUBE has a relative10

angular response similar to a cosine response, red line Fig. 2. By combining the signals
from each head the response is similar to the blue line Fig. 2. Obviously if only the
up- and downwelling irradiances are measured the radiation from the horizon is not
accounted for. Combining the signal from all heads gives an angular response that
overestimates the actinic flux. The magnitude of the overestimate will depend on the15

behaviour of the radiation field which varies with wavelength, altitude, solar zenith angle
and atmospheric composition. This is further discussed below when correcting for the
non-ideal angular response of the instrument.

While the angular response of the instrument does not have a unit response for each
incoming direction, it is important that each head has similar angular responses. This20

was investigated in the laboratory by using a 1000 W lamp and rotary stage. In the left
plot of Fig. 3 is shown the deviation from an ideal cosine response for each channel in
each head for a given azimuth angle. The azimuth dependence was investigated for
both channels in one head and is shown in the middle and right plot of Fig. 3. While the
angular response is not a perfect cosine response the similarity of the various heads25

and channels is within 5% which is sufficient for our purposes.
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2.2. Calibration

The calibration procedure for moderate bandwidth filter instruments have been de-
scribed by Dahlback (1996). The current Ci measured by the instrument in channel i
when illuminated by spectral irradiance F (λ) is

Ci = ki

∫ ∞

0
Ri (λ)F (λ)dλ. (2)

5

Here Ri is the relative responsivity of the channel. The calibration factors ki for each
channel are determined by comparing measurements F (λ) from a well characterized
and high-quality spectroradiometer with simultaneous measurements Ci from the filter
instrument

ki =
Ci∫∞

0 Ri (λ)F (λ)dλ
. (3)

10

The relative spectral response of the NILU-CUBE was measured in the laboratory us-
ing a 1000 W Xe-lamp, a light-intensity controller and a calibrated reference radiometer.
The relative spectral response is shown in Fig. 4. During the Photochemial Acticity and
Solar Ultraviolet Radiation (ADMIRA) campaign in August 2000 at Nea Michaniona,
Greece (Webb et al., 2002), the NILU-CUBE was colocated with a Bentham DTM30015

scanning spectroradiometer. Following the procedure outlined above and detailed in
Dahlback (1996), calibration factors were calculated for one of the heads. To minimize
errors due to differences in the cosine responses, measurement made at local noon
when the solar zenith angle was about 20◦ was utilized. Due to the operational setup
during the ADMIRA campaign it was not possible to rotate the NILU-CUBE to obtain20

calibration factors for the other heads. The calibration factors were transferred to the
other heads using relative measurements made by each head against the NILU-UV
prior to the flight.
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3. Measurements

The balloon was launched from the airport of Gap-Tallard (44.457◦ N, 6.034◦ E, 618
m.a.s.l.), France, on 30 June, 2000. The flight started at 17:48:50 UTC. It took about
90 min. to reach the float altitude of approximately 30 450 m.a.s.l. The balloon stayed
at the float altitude for 28 min. Altitude information was taken from GPS receivers.5

Comparison between the NILU-CUBE and the NILU-UV before and after flight revealed
no detectable changes in the NILU-CUBE. The NILU-CUBE was last in the payload and
about 100 m below the balloon. For all practical purposes the field of view was thus
more or less unobstructed for the measurement conditions, e.g. large solar zenith
angles, during the flight.10

In Figs. 5 and 6 are shown the irradiances measured by the different heads in the 312
and 340 nm channels respectively. The irradiances are shown as a function of the solar
zenith angle. During the ascent the solar zenith angle increased from approximately
76◦ to about 89◦ when the float altitude was reached. At float altitude the solar zenith
angle increased to 94◦ before the descent started.15

The magnitude of the signal in the 340 nm channel is significantly higher than the
312 nm channel. While the maximum in the 312 nm channel is about 80 mW/m2 the
maximum in the 340 nm channel gets above 4000 mW/m2. The extraterrestrial flux is
approximately 1.45 larger at 340 nm than at 312 nm. Hence, the major cause for the
difference in magnitude between the two various channels is ozone absorption that20

affects the signal in the 312 nm channel but is negligible for the 340 nm channel. A
clear ozone layer absorption signature is seen in the 312 nm channel in terms of the
decline in the signal between solar zenith angles of 82–86◦ (corresponding to altitudes
between approx. 12-23 km) and increase between 86–89◦ (approx. 23–30 km). This
altitude range is indicated by a black vertical line in the panel for the south sensor in25

Fig. 5. It is also noted that a significantly larger amount of radiation originates close
to the horizon than from the zenith. This is obviously due to the large solar zenith
angles and the altitude of the instrument. Nevertheless it underlines the importance of
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measuring the radiation from the horizon if the actinic flux is the radiation quantity of
interest.

As the balloon ascends the signals in the various heads and channels varies con-
siderably. The variations are largest in the horizontally oriented detectors that will be
in and out of the direct beam from the sun as the instrument rotated. For the solar5

zenith angles encountered during the flight neither the balloon nor the rest of the pay-
load ever blocked the direct sun. The relative variation in the signal due to rotation is
slightly larger in the 340 nm channel than the 312 nm channel. This is due to a some-
what larger proportion of the light being diffuse at 312 nm than at 340 nm because of
the wavelength dependence of the Rayleigh scattering cross section. The ozone cross10

section is also larger at 312 nm than at 340 nm. It is noted that the direct contribution
to the total actinic flux between 25 and 30 km for the solar zenith angles encountered
during the flight, can be up to 90% (80%) at 340 (312) nm.

The up (top) and down (bottom) pointing sensors are only marginally affected by the
rotation of the payload. However, evidence of pendulum motion of the payload is seen15

in these signals. The downpointing sensor varies smoothly with altitude until the solar
zenith angle gets large enough to let the sensor see the direct sun as the payload
swings. Due to less scattered radiation at 340 nm the variations in both the down and
upwelling irradiances are larger than at 312 nm.

As the instrument rotates the horizontal heads mounted opposite of each other will20

experience maximums and minimums in the radiation field. By combining the signals
from all heads the large variations in Figs. 5 and 6 diminish, see Fig. 7, hence, facili-
tating further analysis. In the summed signales a clear distinct ozone layer signal is
still seen in the 312 nm channel. To further investigate the behaviour of the measured
radiation, model simulations were performed.25
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4. Simulations

The measurements were simulated by the uvspec model from the libRadtran package
(http://www.libradtran.org ). The radiative transfer equation was solved by the
discrete ordinate algorithm of Stamnes et al. (1988) operating in 16 streams mode with
spherical correction as described by Dahlback and Stamnes (1991). The radiative5

transfer model has compared well with surface UV irradiance measurements (Mayer
et al., 1997; Kylling et al., 1998) and airborne troposheric actinic flux measurements
(Hofzumahaus et al., 2001). Input to the model are the ozone and temperature profiles,
surface albedo and altitude and solar zenith angle information. The atmosphere was
divided into 98 layers with about 0.4 km resolution between the surface and 31 km, then10

2.5 km resolution up to 50 km and 5 km above.
Ozone and temperature profiles were taken from an ozone sonde launched from

Observatoire Haute Provence, (OHP), 100 km to the south of Gap-Tallard, on 28 June.
The ozone column estimate from the sonde data was 303 DU. For 30 June the Earth
Probe/Total Ozone Mapping Spectrometer (EP–TOMS) estimated the total ozone col-15

umn to be 315 DU. However better agreement between the model and measurement
was found using the slightly lower value of 283 DU. Data from EP–TOMS between
the 28-30 June indicates that the ozone field was relatively stable during this period.
Hence, the profile from the 28th is expected to be representative for the conditions
on 30 June. The ozone cross section was taken from Bass and Paur (1985). The20

ground albedo was set to 0.05 which is representative for the type of surfaces around
Gap-Tallard (Feister and Grewe, 1995). The Atlas 3 extraterrestrial spectrum shifted to
air wavelengths (M. E. VanHoosier, personal communication, 1996) was used and the
Earth-Sun distance was corrected for.

No information about aerosols composition and concentration was available for the25

flight. For the model simulations background aerosol concentrations were assumed.
The aerosol extinction profile was taken from the spring-summer background aerosol
profile of Shettle (1989). The surface visibility, which for this aerosol model affects
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the aerosol up to altitudes of 2 km, was set to 50 km. The Henyey–Greenstein phase
function was used with asymmetry factor from the above spring-summer background
aerosol model.

As noted in Sect. 2.1, combining the signal from all heads will overestimate the ac-
tinic flux. To quantify this overestimate the radiance fields were calculated for 3125

and 340 nm for all the altitudes and solar zenith angles for which measurements were
made. These radiance fields were integrated using the measured angular response
of the NILU-CUBE to yield a simulated NILU-CUBE signal. This simulated signal was
ratioed with the actinic flux from the same simulations. This ratio is termed the angular
response correction factor and is the number with which the NILU-CUBE measure-10

ments must be divided to get the actinic flux. The angular response correction factor is
shown in Fig. 8. The angular response factor is nearly constant for the 312 nm chan-
nel while it varies considerably with altitude for the 340 nm channel. This is due to
the radiation field being more isotropic at 312 nm than at 340 nm. The NILU-CUBE
data shown in Figs. 7 and 9 have all been corrected for using the angular response15

correction factors shown in Fig. 8.
The NILU-CUBE reports data values every 5 s which corresponds to an altitude res-

olution of about 50 m. For each altitude an actinic flux spectrum was calculated and
convolved with the spectral response for each channel. The resulting simulated actinic
fluxes are shown as black lines in Fig. 7.20

The model/measurement ratio as a function of the solar zenith angle is shown in
Fig. 9. For solar zenith angles up to 90◦ the simulations are within 20% of the mea-
surements for the 312 nm channel. For the 340 nm channel the simulations and mea-
surements agree to better than 10% for solar zenith angles up to 93◦. Considering
the large solar zenith angles, the associated uncertainties in the correctness of the25

pseudo-spherical approximation used for the model simulations, and the uncertainties
in the aerosol optical properties, the results gives confidence in both the behaviour of
the instrument and the model simulation.

Somewhat larger differences are seen between the simulations and the measure-
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ments in the 312 nm channel compared to the 340 nm. These may be attributed to
uncertainties in the ozone profile with respect to the actual profile during the flight.

The overall agreement between the measurements and the model simulations is
good. And at least for cloudless sky conditions the present results supports the con-
clusions of Bösch et al. (2001) that uncertainties in UV and visible actinic fluxes is not5

a likely factor that may explain the discrepanices between model and measured strato-
spheric NO2 at large solar zenith angles.

5. Photodissociation rates

Dahlback (1996) showed that it was possible to reconstruct UV irradiance spectra
based on the measured total ozone column and the measured effective cloud optical10

depth. As shown by e.g. Webb et al. (2002) the ratio of actinic flux spectra to irradi-
ance spectra depend on wavelength, solar zenith angle and aerosol amount. However,
the same spectral lines are present in both irradiance and actinic flux spectra. Above
the radiation measured in the 312 and 340 nm channels by the NILU-CUBE was sim-
ulated by a radiative transfer model. The most important input for the simulation was15

the total ozone column, the ozone profile, solar zenith angle and altitude information.
The same input was used to calculate the actinic flux at other wavelengths. Thus, ef-
fectively an actinic flux spectrum was reconstructed from the measurements made at
two wavelengths. While this approach has not been validated by simultaneous mea-
surements by the NILU-CUBE and a spectroradiometer measuring the actinic flux, the20

model has been validated thoroughly against surface irradiance measurements (Mayer
et al., 1997; Kylling et al., 1998) and airborne actinic flux measurements (Hofzumahaus
et al., 2001). From these measurement/model comparisons there are no indications
that if the model is able to reproduce the measurements at one wavelength it will fail at
other wavelengths.25

The reconstructed actinic flux spectra may be used together with the appropriate
cross sections and quantum yields to calculate various photodissociation rates of in-
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terest. Examples of the JNO2
and JO(1D) photodissociation rates as estimated from

the NILU-CUBE measurements are provided in Fig. 10. The ozone cross section and
quantum yields used to calculate JO(1D) were taken from Bass and Paur (1985) and
Talukdar et al. (1998) respectively, while the NO2 cross section and quantum yields
were taken from Schneider et al. (1987) and DeMore et al. (1994) respectively.5

As opposed to earlier figures the photodissociation rates are shown as a function
of altitude. Fig. 10 includes data from the ascent, the float altitude of approximately
30 km and the descent. It must be kept in mind that as the balloon ascends the solar
zenith angle increases. Hence the blue lines in Fig. 10 also include solar zenith angle
variations. Examples of instantaneous photodissociation rate profiles calculated with10

the same input data are provided for solar zenith angles of 75◦ and 90◦ in Fig. 10.

6. Conclusions

A new lightweight multichannel moderate bandwidth filter instrument has been flown
on a balloon in the troposphere and stratosphere for solar zenith angles between 76-
95◦. After correcting for the angular response the instrument effectively measures the15

actinic flux at two channels centered at 312 and 340 nm with a bandwidth at FWHM of
approximately 10 nm. The measurements have been compared with a state-of-the-art
radiative transfer model. Agreement within ±10% (±20%) are found for solar zenith
angles smaller than 93◦ (90◦) for the 340 (312) nm channel. To the authors knowledge
this is the first comparison of a radiative transfer model and UV measurements made20

at such large solar zenith angles throughout both the troposphere and stratosphere.
The agreement between the model and the measurements indicates that the so-called
pseudo-spherical approximation is well suited to calculate the actinic flux at large solar
zenith angles.

From the simulations actinic flux spectra are reconstructed from which various pho-25

todissociation rates are calculated. Such photodissociation rates are important for test-
ing and verification of radiation schemes used in chemistry models.
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Further development of the instrument include better angular response of input opitcs
and comparison of reconstructed actinic flux spectra with measured actinic flux spec-
tra. To improve the agreement between simulations and measurements simultaneous
measurements are needed of the ozone profile and the aerosol optical properties.
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Fig. 1. The NILU-CUBE before being protected by styrofoam. The size is about 18 cm from
head to head. The weight, including a seperate data logging unit is less than 4 kg.
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Fig. 2. Polar diagram of the relative angular response (black line) for an ideal actinic flux meter.
(Red lines) The relative angular response of each of four NILU-CUBE heads. (Blue line) The
effective relative angular response of the NILU-CUBE.
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Fig. 3. (Left plot) The difference from an ideal cosine response for each channel for a fixed
azimuth angle. (Middle plot) The same difference for the 312 nm channel of one head for
various azimuth angles. (Right plot) Similar to the middle plot but for the 340 nm channel.
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Fig. 5. The irradiances during the flight for the 312 nm channel as a function of solar zenith
angle as measured by the various heads. The red dots give the measurements at the altitudes
given in the panel for the top sensor. The balloon stayed at the float altitude for solar zenith
angles between 89◦ and 94◦. See Fig. 7 for solar zenith angle versus altitude. The black vertical
line for the south sensor panel indicates the altitude range for which absorption of radiation by
the ozone layer is seen. See text for more comments.
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Fig. 6. Similar to Fig. 5, but for the 340 nm channel.
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Fig. 7. The sum of the signal from all heads for each channel as a function of the solar zenith
angle (blue line: 312 nm, red line: 340 nm). The green line is the altitude of the instrument. The
black lines are model simulations of the measurements.
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zenith angle and thus altitude (green line).
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the two channels.
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Fig. 10. The JNO2
and JO(1D) photodissociation rates as estimated from the NILU-CUBE mea-

surements (blue lines). Also shown are the same photodissociation rates, but for constant solar
zenith angles of 75◦ (right black lines) and 90◦ (left black lines).
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